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1.  INTRODUCTION

Our group is presently developing a new general-pur-
pose shock code applicable to problems involving high com-
pression, plastic flow, and vaporization. Thin regions of
material, due either to initial geometry or high compression,
will not be adequately represented by a fixed Eulerian mesh;
on the other hand, no purely Lagrangian technique can rep-
resent highly distorted plastic or inviscid fluid flow adequate-
ly. We have chosen to implement arbitrary Lagrangian-
Eulerian (ALE) techniques in the new shock code so that it
will be able to handle the entire range of phenomena of inter-
est.

1.1.  Plastic flow vs. inviscid fluid flow

Plastic flow often results in the material behaving as if it
was incompressible. Fully-integrated finite elements, in
which the deformation field is approximated to the same or-
der as the velocity gradient, cannot be used to solve an in-
compressible flow problem1; such elements are unable to
represent the Stokes flow field resulting from certain defor-
mation modes (the hourglass modes) with the result that
these modes are filtered out of the velocity field. This is true
no matter how fine the mesh is made. That is to say, the meth-
od is not convergent.

Generally, the problem is solved by reducing the order
of approximation of the deformation field so that the hour-
glass modes are no longer coupled to the deformation. This
renders the method convergent, but requires the introduction
of hourglass control algorithms to prevent uncontrolled exci-
tation of the hourglass modes.2 A significant body of theoret-
ical work now exists for hourglass control methods which
are tied to the shear modulus of the material. In practice,ad
hocparameterization is used for calculational simplicity
with the complete theory providing guidance on the values to

use for the parameters.

If a calculation involves inviscid fluids, these hourglas
control methods fail, since the shear modulus of the mater
is vanishingly small. This reflects the fact that a perfect flu
has no hourglass resistance. Since it is the hourglass dis
tion that is ultimately responsible for mesh tangling, this is
serious difficulty.

One is left with a number of alternatives for solving the
problem. The first is to avoid incompressible materials an
use a fully integrated element. This is not a satisfactory so
tion. Many materials of interest will have Poisson’s ratio su
ficiently close to 0.5 at some point in a calculation that a
mesh of fully-integrated elements will be too stiff.

The second alternative is to use different element tec
nologies for different portions of the mesh. This fails if a sin
gle material is both inviscid and nearly incompressible.

The third alternative, which is explored in this paper, i
to use an underintegrated element with standard hourgla
control in an ALE setting. If a rezoning scheme can be foun
that reduces the hourglass component of the mesh, then
plication of this scheme may be adequate to control hour
glass deformation.

1.2.  ALE rezoning schemes

A finite-element based ALE scheme generally function
like a normal Lagrangian finite-element method until the
mesh distortion exceeds some limit. The material is then p
mitted to flow through the mesh in such a way that mesh d
tortion is reduced to acceptable levels (which constitutes t
semi-Eulerian mode of the ALE method).3

It is relatively easy to formulate a criterion for permit-
ting material convection. For example, one can switch on
convection when one of the angles formed by element sid
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at a node becomes too acute or when the elements connected
to a node differ too greatly in volume. In our case, convection
would be switched on when the hourglass component of the
deformation field of an element becomes too great.

It is somewhat more challenging to come up with a good
rezoning scheme. Benson3 advocates the use of stencils that
enforce equipotential relaxation, and this has become thede
factostandard rezone method. However, as will be shown in
this paper, there are classes of problems for which equipo-
tential relaxation may be inferior to alternate methods if one
is primarily interested in ALE hourglass control.

2.  REZONING STENCILS FOR ALE SCHEMES

2.1.  The Winslow stencil

This stencil is derived from a finite difference represen-
tation of the Laplace equation4

(1)

Hence it is referred to as anequipotential relaxation stencil.

The chief drawback of the Winslow stencil is that it
tends to equalize element volumes as well as reduce the vor-
ticity of the mesh (that is, to equalize the angles formed by
element sides at each node). This eliminates any initial mesh
grading that may be introduced by the analyst. If the material
contains strong density gradients, as is the case for many
problems of interest to our group, such mesh grading is a
highly desirable feature.

Figure 1 illustrates this behavior. Winslow’s stencil has

been applied to a mesh with unequal spacing of boundar
nodes. One sees that elements away from the boundarie
tend to be equal in volume despite the unequal boundary
tervals. Although one could introduce a source term into th
equipotential scheme so as to “attract” the mesh to regions
high density, Benson notes that this source term could le
to mesh overlap.

2.2.  The stabilized serendipity stencil

This stencil gets its name from the fact that it was orig
nally derived from the isoparametric 8-node serendipity e
ment used in finite element methods. It may also be deriv
from the finite difference representation of the partial diffe
ential equation

(2)

with the general solution

. (3)

This stencil takes the form

(4)

where the superscript denotes the iteration number and 
subscript denotes the node number according to Benson
numbering scheme. (See Figure 2.) The  contribution o
the right hand side is required for stability.

Figure 3 illustrates the properties of this rezoning
scheme. The boundary nodes are spaced identically with
Figure 1. One sees that there is no tendency to equalize
ment volumes; only the vorticity of the mesh has been re
duced.
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Another striking feature of the serendipity stencil is that
the resulting mesh is more sensitive to the boundaries than is
the Winslow mesh. One therefore has a greater degree of
control over the details of rezoning. Any suitable algorithm
may be employed to redistribute the nodes along the bound-
aries of the mesh; the remainder of the rezoned mesh will
then conform closely to the boundary.

2.3.  Acceleration of convergence

The chief drawback of the stabilized serendipity stencil
is that it converges very slowly. Figure 4 illustrates the prob-
lem. After five iterations, one sees that the initial, highly dis-
torted mesh has begun to smooth near the boundaries;
however, the center of the mesh remains highly hourglassed.

Ng acceleration5 provides a means of increasing the rate
of convergence. Figure 5 illustrates that the hourglass pattern
is smoothed much more quickly by four Ng-accelerated iter-
ations than by five iterations alone. (The computational cost
is comparable). However, the global solution is still reached
only very slowly; in the example, one sees an overall up-
wards distortion of the interior of the mesh that has not been
completely removed by the Ng-acclerated iterations.

3.  CONCLUSION

We are exploring the use of ALE techniques for the con-
trol of hourglassing in underintegrated inviscid fluid ele-
ments. We find that the stabilized serendipity stencil has
great potential as a rezoning scheme because it reduces mesh
vorticity without destroying mesh grading. Ng acceleration

is useful for increasing the rather slow rate of convergence
the stabilized serendipity stencil.

FIGURE 3.

Stabilized serendipity mesh FIGURE 4a.

Initial hourglassed mesh

FIGURE 4b.

Mesh after five iterations

Mesh after four accelerated iterations
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